🕨 permion

Response to Al Action Plan, US Leadership

To: Faisal D'Souza, NCO	From: Arun K. Majumdar and John F. Sowa
Office of Science and Technology Policy,	Permion Inc.,
2415 Eisenhower Avenue,	800 Corporate Dr., Suite 301,
Alexandria, VA 22314	Stafford, VA 22554

This document is approved for public dissemination. The document contains no business-proprietary or confidential information. Document contents may be reused by the government in developing the AI Action Plan and associated documents without attribution.

About Permion

Permion Inc. has developed technology that supports a novel neurosymbolic AI processor enabling competitive foundational AI models, integrating parallel, distributed, Agentic, neural, and logical capabilities. The company offers a full-stack approach to AI, coding analyzers, coding tools, and industry-standard compliance to popular developer environments as well as ISO Standards (ISO 24707) Common Logic. Our flagship product, the XVM[™] (X-Machines Virtual Machine), also offers lower size, weight and power, higher efficiency options for advanced AI application development. We have built an application to illustrate the use of XVM[™] as the Digital Subject Matter Expert (DSME[™]) tool for business intelligence analysis. The company plans to create AI chips in the future, based on the design of its neurosymbolic AI Instructure Set Architecture (ISA). More about Permion is at <u>https://permion.ai/</u>

Dr John F., Sowa and Arun K. Majumdar have collaborated for over two decades, developed technologies and standards for the AI community, and published in multiple peer-reviewed journals. Our view for AI at human level cognitive processing is a statement that there is a need *"for an internal virtual reality as the foundation for the perception, action, and cognition of an embodied mind"* quoted from the paper by Sowa "The Virtual Reality of the Mind"¹.

Response

Permion Inc. appreciates the opportunity to contribute to the public discourse for the Office of Science and Technology Policy to provide input to the AI Action Plan and to empower the supremacy of US Leadership in

¹ <u>https://www.jfsowa.com/pubs/vrmind.pdf</u>

Al technological superiority. We recommend that the Al frontier address these key foundations: Knowledge Representation, the use of Quantum approaches, and formalized engineering methods adapted for use in guaranteeing trustworthy, verifiable, certifiable, Al processing and Al models. For a view on the quantum perspective, the paper by Majumdar and Sowa² combines general probabilistic model (of Quantum Theory) with formal logical knowledge representation (Conceptual Graphs, ISO 24707) embedding formal methods within error bounds of confidence within cognitive models. ChatGPT and Large Language Models (LLM) are auto-regressive probabilistic models and require policies to support the use and reference of ontology and knowledge representation to codify the informational physics, causality capabilities, provability in inference, of Al models and processes to address the ability to solve constraints and problems of planning and logistics. The point is emphasized by Sowa in a popular YouTube video³.

We recommend the AI Action Plan expand on leveraging not only an AI talent network but also related multidisciplinary communities in advanced mathematics, logic, expertise in ISO standards, NIST, and encourage practitioners in physics, both the hard and soft engineering disciplines, to work with AI. In our viewpoint, we recommend that our contributions towards policies be further carefully calibrated and targeted, effectively aligning multiple communities, and assure the protections of the various communities and their interests as they advance the proposition for America to serve as a frontier leader in AI.

Based on the topics identified in the RFI, we provide responses below in Table-1 to address the elements. Following this response, we offer seven recommendations that we see as cross-cutting to the big picture of American leadership in AI technological superiority, following and appended as Table-2 and Table-3.

Table-1: Permion Inc. Response Categories		
Hardware and chips	Al workloads require radical re-design by policies that incentivize	
	technological superiority over business scaling drivers.	
Data centers	Policies to empower AI supply innovation for AI task-specific data	
	centers that drive optimized value-chains to contribute to an Al	
	ecosystems policy over commoditized limited centralized capabilities	
Energy consumption and	Al requires size, weight and power (SWaP) policies. We recommend a	
efficiency	metric of AI model size and power relative to information theoretic,	
	e.g.,, such as entropy coupling metrics (between answers and	
	reference data).	
Model development	Models require policies that enforce proof-of-integrity, compliance to	
	measures of security, resilience, and capabilities to incentivize	
	adoption. Generative AI like all probabilistic models must have criteria	
	for evaluating the precision of outputs and results within designated	
	error bounds for task specific problem solving.	
Open-source development,	Al in the open-source community requires policies to define and	

² <u>https://ieeexplore.ieee.org/document/6927518</u> Quantum Cognition

³ <u>https://www.youtube.com/watch?v=t7wZbbISdyA</u> - Without Ontology, LLMs are clueless

application, and use (either in	create support frameworks that can curate, validate and authenticate		
the private sector or by	provenance of data sources while mitigating the risk of disinformation		
government)	or fake data.		
Explainability and assurance of	We recommend standard publication methods for producing		
Al model outputs	measurable, repeatable, reproducible, results on the confidence of		
	both explanations as well as measurable assurance of AI through		
	community developed standards and peer-reviews.		
Cybersecurity	Counter-AI is a significant new domain of cybersecurity concerns as AI		
, ,	operations on human-AI interactions, AI on AI interactions, and AI on		
	data or machine processes as well as AI in the loop of conventional		
	offensive/defensive cyber are largely absent in all current policy.		
	regulatory or compliance strategies.		
Data privacy and security	A national level effort to utilize emerging tools and consensus based		
throughout the lifecycle of Al	annroaches with metrics and measurements, with confidence		
system development and	confidentiality and integrity is needed — for example, leveraging		
deployment (to include security	Blockchain technology to support Al leveraging behavior profiling to		
against Al model attacks)	support Al model integrity lowersging the concents, techniques		
against Al model attacks)	tagtice and precedures of companies like Danidfort (Irenhank) or		
	Chainguard an ethere in providing model and data risk reduction		
	Chainguard of others in providing model and data fisk reduction		
	sources versus nonor-system based approaches (such as "model		
	cards" used by an unpoliced community for model descriptors).		
Risks, regulation, and	We recommend the NIST recommendations for Zero-Trust		
governance	Frameworks applied to AI and approaches especially relevant to AI		
	systems. The nexus of AI tools and techniques occurs in the		
	embodiments such as advanced Robotics, UAS or Counter-UAS,		
	intelligence and defense. This has been largely driven by reliance on		
	vendor-defined bespoke metrics that have no attachment or		
	derivations from reference methodology or best-practices — other		
	than trust in an honorable vendor. The issues of risks, regulation and		
	governance requires a policy to support the creation as well as the		
	enforcement of use of, for example, ISO Standards, such ISO 24707		
	(Common Logic) for interchange compliance and many more		
	standards development efforts by the expert communities. Al		
	systems are largely unbounded by any hard real-time or		
	responsiveness standards and this mitigates their use.		
	trustworthiness and reliability in for example combat systems		
Technical and safety standards	We recommend a new US Al government organization be created		
reennear and safety standards	in concert with DoD and the Intelligence Community FERDCs. National		
	Labs NIST and DHS to bring the Al best practices into consensus on		
	where safety and technical standards are truly meaningful, weapone		
	where salely and technical standards are truly meaningful. Weapons,		
	industrias		
Mathematica (1997)	Management a National Constitution of D. C		
ivalional security and defense	we recommend a National Security and Detense caution to addres		
	the role of Al in counter-Al, with respect to Great Power Competition,		
	with respect to force-multiplication and irregular warfare. We shall		
	not commit our understanding into the public record at this time but		

	can do so within appropriate secure environments of discourse.		
Research and development	There is prevailing tendency to craft or engineer requirements to		
l l	stimulate research and development based on certain commercial		
	events. However, there is a large gap in stimulating moonshot		
	innovation in the research itself, as well as adoption of adility		
	enhancing tools that may be outside of the mainstream. The key		
	impediment is the nature of policies that influence investor decision		
	making Timelines of investment for serious advancements require		
	policies that incentivize domestic industrial base and infrastructure		
	efforts in technology over the abundance of investment in business		
	scaling which is driven by commodity markets cost-minimizing		
	purcuits which leads to outsourcing and other behaviors that shift the		
	pursuits which leads to outsourcing and other behaviors that shift the		
	value chain of deep investment to adversarial and foreign		
	competitors. Research and development requires the long-game		
	policy support that extends beyond any one presidency.		
Education and workforce	we recommend AI enabled workforce development, AI supported		
	education practices with teachers for AI itself to which policies of		
	compliance around measurably secure, measurable truth (versus		
	deception) will become factors in both training and distinguishing the		
	use of AI as appropriate in education. AI may need to be treated as		
	an "adult" tool and not necessarily one that is used as crutch by		
	students to cheat their way through home-work. Al as a support to		
	teachers should clearly be supported by policy to force-multiply		
	teacher-student effectiveness and personalization of educational		
	throughput		
Innovation and competition	We recommend adding policies and measures to protect American		
	companies from predation and espionage or exposure of critical Al		
	technologies while recognizing that innovation in new AI software or		
	infrastructure or chips is very high-risk and competition that		
	originates from within the country is an inherently healthy activity, but		
	critical also is to recognize theft from outside the country as a		
	predatory and as an unhealthy activity that can compromise much		
	more than just the survivability of any one specific company.		
	Therefore, measures of "creativeness" and "innovativeness" and		
	measures of "originality" as well as measures of "Technology		
	Readiness Level" (TRL as defined by NASA) must be used to identify		
	the hidden gems of American innovations that need to be protected		
	or supported. It is far too easy for an adversary to circumvent CIFIUS		
	or FOCI issues and any company that has a critical AI technology can		
	be targeted by "disinformation" agents of foreign regimes to "poison"		
	the well of investor pools. There are several examples of companies		
	that have been removed from the American market and that are now		
	part of, for example, Chinese technology assets.		
Intellectual property	We recommend policy to support the protection of American		
	sourced Intellectual Property which is currently wholly absent in the		
	Patent system. Al is the key differentiating technology in the		

	projection of national power and the individual as well as corporate innovators need to file patents within the American legal apparatus that recognizes the need to avoid publications of sources and methods to the open world community. By endorsing policies and regulations to transform the current climate of Intellectual Property (IP) rights and management of AI specific technologies, to support a national registry of trade-secrecy as an America only protected IP base, the apparatus of the USPTO may be extended to recognize the role of AI both from commercial actors developing within the country as well as the DoD/IC focused actors		
Due sumero entrinte metionel	as well as the DoD/re rocused actors.		
Procurement, international	we recommend A systematic and focused effort on the production		
collaboration, and export	of business intelligence to serve as an American national treasure		
controls	needs at the very least supporting policies for supply chain creation		
	and management, perhaps with the Small Business Administration.		
	The supply chain becomes the root cause in the matter for any		
	procurement effort, or international collaboration as well as to		
	understand the need for where and what kind of export controls are		
	needed An Al and related-technologies canability based supply		
	chain unification of connected supply chains with the domestic bace		
	chain, unincation of connected supply chains with the domestic base		
	as well as the indirect dependence on foreign individuals, or foreign		
	control or foreign assets could be supported by policies to incentivize		
	company procedures for reporting into a structured process. We car		
	think of this as analogous to a national library of assets that could be		
	leveraged for value chains based on the supply chain.		

Permion Recommendations for the Al Action Plan

Permion envisions the result of the Al Action Plan as **Al Technological superiority of America as the frontier leader.** We define Al Technological superiority as the quality of operations generated by the human and Al tools and techniques used to conduct them, to deliver **extreme mission agility**. This is about an organization's capacity to anticipate critical outcomes in a complex competitive environment and take action to maintain advantage. Operating with mission agility means that any competitor is enduringly overmatched, and the organizations core culture, values, and stakeholder benefits are maintained. In a military context this means continuously outwitting, out-thinking, out-maneuvering, and outpacing any adversary in all domains. We provide 7 key strategic elements that have several aspects.

Recommendation #1 – AI Action Plan Requirements Matrix

We recommend several key Al focused areas for an Al Action Plan to deliver American technological superiority to enable mission agility and to achieve overmatch. Table 2 below presents requirements for such an Al Action Plan.

Table-2: AI Action Plan Requirements Matrix		
What Do We Need?	What Does It Do for the AI Action Plan?	Technology Solution Ideas
1. Communications	Offers limitless possibility for creating	Post-quantum resilient

Integrity and Dominance Dynamically composable trusted information connections between certifiably friendly entities, robust to adversarial action.	 Al power, effects webs at the tactical, operational, and campaign. Implies inherent backwards compatibility and just-in-time custom creation of any needed connections that Al or human actors need. Enables rapid, intelligent, strategic composition of diverse Al systems under adversity. 	 cryptology. Zero-trust blockchain, enabled by Al, for secure data transfer within and between theaters. Al Smart contracts for chain of custody of data, users, and endpoints. Al-powered cyber networks to mitigate risk <i>at the edge</i> and offer offensive use.
2. Information & Decision Dominance Mastery of all available data, information, and knowledge to optimize available courses of action for mission impact and superiority.	 Clarity in the Al powered operational environment through advanced sensor processing – reduction in the "fog of war." Eliminate Al hallucination, gain trust, explainability and sustainment. Insight through real-time Al processing all incoming data streams with advanced Al methods and Al toolkits to generate new approaches. 	 Capabilities based on modular open systems Al architectures and inherent capacity for rapidly composable applications. Modern <u>cybernetic system- of-systems approach to Al</u> with <u>feedback</u> to drive sensing and decision making in human-Al teams. Network and edge-centric embedded Al for hardware/software infrastructure.
3.Human Machine AR/VR Insight Preservation of mission-intent through timely, high- fidelity analysis in the chain of command, effects, and outcomes.	 Reduction in operator analytic load and enhancement of results by Al powering visual and cognitive relief. Instantaneous integration of task specific Al Knowledge, Skills, Abilities (KSAs) and Al improvement in after- action reports/lessons learned into the operational Al refinement process. 	 Augmented and Virtual reality technologies (AR/VR) integrate the AI with human- on-the-loop. AI-enabled Brain sensing to enhance C4I. Machine Learning from human expertise, powers the human with profound insight and foresight.
4. Asymmetric Computing Superior algorithms through quantum design thinking,	• The ability to assess past and present data and project through all plausible futures; achieved through systems that utilize quantum features: superposition, entanglement, and interference.	 Non-Von Neumann Computing, including Quantum computing, algorithm design, and emulation with AI/ML augmentation.

solving problems in complex, high- dimensional spaces with unmatched speed.	 Detecting weak signals hidden in noise and obscured by complexity, allowing for a new level of insight into the operational space. Cross-domain insight at any scale and across differing types of effects networks offers new COAs for adversary competition, deterrence, or defeat. 	 QIS-based representations for data / information / knowledge. Programmer-friendly <u>Q/S- Based Languages and Tools</u> for efficient, fast, capability development. Graph computation and representation with integrated QIS-based techniques. Algorithms to identify weak signals in data and lead to identification of novel COAs.
5. Anticipatory Operations Integrate past, present, and plausible future scenarios for optimal power projection.	• Anticipatory CONOPS: continuous Al scanning and inference, integration of lessons learned, draw out signal from noise and identify patterns of data in motion. Synthesize cohesive situational picture using Al across domains and as a sequence in time to project plausible futures for COA development.	 AI based Digital Twins Quantum & Quantum Network/Graph Computing Automatic ontology construction that integrates all the elements in the previous sections of this matrix.

Recommendation #2 – Reference the National Strategic Interests

We recommend using the key national strategic interests in the Al Action Plan that provides the key reference needs. We have consolidated these into table-2 below.

Table-3: References for National Strategic Interests		
TOP NEEDS	SELECTED STATEMENTS	REFERENCES
Mission Agility &	2018 National Security and Defense Security	https://nsiteam.com/futu
	Strategies address the new character of warfare.	re-military-intelligence-
Anticipatory Operations	The 2018 NSS states "Majority of adversary	<u>conops-and-st-</u>
	efforts in Competition phase (short of armed	investment-roadmap-
Only through hindsight (past),	conflict) (are) challenging our ability to deter	2035-2050-the-
insight (present), foresight	aggression." It is in the cognitive realm we are	<u>cognitive-war/</u>
(future), topsight (past,	losing the ideological war on multiple fronts, we are	
present, future) that we can	losing our intellectual property, our adversaries are	https://nsiteam.com/soci
seek to understand and	outmaneuvering us, and we are failing to achieve	<u>al/wp-</u>
anticipate.	overmatch because we focus solely on kinetic	content/uploads/2019/0
	options.	4/Future-MI-CONOPS-
		and-ST-Roadmap-2035-

	Moving from Perpetually Reactive Posture to one of Proactive Influence and Predictive Analysis.	2050_2-20- 2019_FINAL.pdf
	Anticipatory intelligence involves collecting and analyzing information to identify new, emerging trends, changing conditions, and undervalued developments, which challenge long-standing assumptions and encourage new perspectives, as well as identify new opportunities and warn of threats to U.S. interests. Anticipatory intelligence usually leverages a cross-disciplinary approach, and often utilizes specialized tradecraft to identify emerging issues from "weak signals," cope with high degrees of uncertainty, and consider alternative futures.	https://www.dni.gov/files /ODNI/documents/Nation al_Intelligence_Strategy _2019.pdf
Machine Learning/	"We can send a UAS to look down alleys, around	https://fas.org/irp/progr
Artificial Intelligence;	buildings, in backyards, or on a root to see what's up there, dramatically increasing Soldier protection and preserving the force - a vital force multiplier in	am/collect/uas-army.pdf
Graph Signal & Cyber Edge	this era of persistent conflict "- Major General	
Processing	James O. Barclay, III, Commanding General of the United States Army Aviation Center of Excellence (USAACE) and Fort Rucker, Al	
Non-Von Neumann &	DoD CIO Priorities:	https://media.defense.g
Quantum Computing;	 Cybersecurity Artificial Intelligence (AI) 	<u>ov/2019/Jul/12/200215</u> <u>6622/-1/-1/1/DOD-</u> DIGITAL-
Blockchain, Smart-Contracts & Cryptography	Cloud <i>(NB: Combat systems can be standalone)</i> Command, Control and Communications (C3)	MODERNIZATION- STRATEGY-2019.PDF
	 Digital Modernization Goals: Innovate for Competitive Advantage Optimize for Efficiencies and Improved Capability Evolve Cybersecurity for an Agile and Resilient Defense Posture 	<u>https://www.afspc.af.mil/</u> <u>Portals/3/Future of</u> <u>Space 2060 (5 Sep).pdf</u>
	Protect the combined commercial, civil, and military command, control, communications, computer, intelligence, surveillance, and reconnaissance (C4ISR) infrastructure to monitor and control space operations and provide information services in, through, and from the cislunar environment during peace and conflict.	

Recommendation #2 – Compound AI as a Path to Artificial General Intelligence (AGI)

The rise of Large Language Models (LLMs) in 2023 has transformed AI application development. We recommend AI models and their computational algorithms or agents be treated as <u>*Compound AI systems*</u>, which aim to integrate many components to achieve beyond state-of-the-art results. We recommend the AI Action Plan use the DoD DODAF and engineering best-practices based on analogs in combat systems mission engineering doctrine. Retrieval-Augmented Generation and complex multi-step inference strategies using chain-of-though prompt engineering are adhoc solutions to the deeper problem of sound and verifiable inference. Therefore, the AI Action Plan should include incentives to enhance performance beyond what any monolithic models can achieve, combine LLMs with other components like symbolic solvers, constraint solvers, logic, and a variety of code execution modules and favor a path to **Artificial General Intelligence (AGI)**. Even a task-specific activity (e.g., drug-design) may require several AI models, humans and a variety of expertise to achieve impactful results, all of which can contribute to AGI development.

Compound AI systems address challenges that single models cannot. We recommend the AI Action Plan include not only the policies to guardrail auto-regressive or statistical AI models, to endorse and incentivize the use of symbolic methods, first-order or modal logical models, neural and hybrid systems. This approach favors and emphasizes data, information and knowledge representation including adoption and adherence to standards or community endorsed best-practices. The approach disincentives black-box approaches and incentivizes the use of measurably secure rationally bounded approaches to mitigate risks.

Compound AI integrates neural and symbolic, both static and dynamic data, improving control and trust, and optimizing performance for varied application requirements, offering substantial benefits, including reliable, trustworthy, and efficient AI. **We recommend Neurosymbolic AI to support compound AI technologies**, Agents and systems. Developing AGI using compound AI systems involves navigating a vast design space, optimizing the interplay of different components, and managing intricate operations and this will require extensive benchmarks.

Recommendation #3 - Al Instruction Set Architecture and Formal Methods

We recommend national focus on the design of the Instruction Set Architecture (ISA) and the models of Al computing because the ISA is at the heart of the problem for Al superiority, software and hardware. There is little work available in Al ISA design and there is a need for both task-specific and cross-task Al processing acceleration. To get more scale or speed, at the high cost of power and memory, systems are tiled, cascaded or layered in pursuit of the performance to run large Al models, to perform the vast numerical calculations and to manage data processing. Conventional computing relies on a Von-Neumann design paradigm and an ossified reliance silicon materials science for manufacturing. New computing approaches intrinsically need new materials science not based on silicon. But this needs policy to halt the stifling effect of silicon.

We recommend considering new and emerging Al processor designs for Non-Von-Neumann deeply parallel, datadriven, or data-oriented computing that uses new materials and alternative materials properties or physics. However, the issue of the ISA, and the subsequent issues of how Al is defined within such a system will require a joint approach to rapidly evolve, iterate and co-design new data structure representations that may include new representations of the concept of a "number" as well as encouraging and supporting new or nascent processes with its alternatives, such as analog array processing, photonics, or quantum. We recommend policies that support formal methods and verifications. The ultimate version of Al empowerment: the ability of software to define hardware in which Al co-evolves within human intentions for creating the capabilities required for delivery at any time, any place, with proof of correctness, integrity, trust and verifiability.

Recommendation #4 - Quantum Information Science as Key Enabler to AGI

Power in the modern conflict/competition environment is accumulated to those with mastery of information and technology. While conventional information science is well-established, we can see the future in an Al Action Plan transformed by leveraging policies that support the use of *Quantum* Information Science (QIS). We recommend leveraging the Quantum Information Science (QIS) for artificial general intelligence (AGI) in a co-optimal, co-design strategy, that only then can both hardware and software, materials-science and manufacturing be approached holistically and in concert together. We recommend the Al Action Plan favor QIS and thus a path to AGI.

With the emerging exponential capacity of Quantum Computing, we see QIS able to unlock powerful new capabilities. Therefore, QIS should be favored by policy in any AI Action Plan for Quantum AI, Quantum Inspired AI or other approaches leveraging QIS and should be considered one of the key bedrock theories underlying every choice, design motivation, asset, and technology in this endeavor.

We recommend emphasis on quantum approaches, and QIS that will define the coming AI era in much the same way as Einstein's energy-mass equation defined the Nuclear Age.

Recommendation #5 – Public Private Partnerships

We recommend a rapid and iterative Private-Public partnership for not only the big businesses, but most importantly as a deliberate act of policy for the small emerging Al business. We recognized the need for a new corporate strategy that we outline here to underpin the organizational approach:

- 1. **We recommend a "Skunk Works" mindset**: A talented, well-led, and well-funded team can achieve more than a large bureaucracy. Small companies can achieve more agility in innovation than large corporates.
- 2. This effort and all involved should be inclusive of an ongoing creation of American society, its development, and maturation of the *practice* of the representative government, the use of AI in daily life and the support of capitalism within that structure, against adversarial philosophies from peer-competitors.
- 3. We recommend defining an AI Entity that uniquely represents American national interests by design and societal ideals, in essence acting as a Constitutional Citizen (a "virtual" synthetic entity with thinking skills) that means we need policies integrated into the engineering of AI so that AI is built by design to be resilient to adverse effects much like a war fighter is trained for survival, evasion, resistance and escape.

Recommendation #6 – Human Centered AI and Specific Measures of Impact

We recommend that AI needs to be governed with the center of action as the "human-on-the-loop-of-AI". In this viewpoint, convergent technologies augment the human, not replacing the human and the primary agent in the operational "space" of commercial competition, battle, intelligence, or other is centered on the human or the human-AI team. Any desired operational quality becomes the achievement of desired and chosen outcomes by an AI system supporting the human, while maintaining freedom of action and minimizing adversarial knowledge and response. The key foundation for this systems design approach is through *technological convergence* of communications, AI/ML, high-performance computing, and an entirely new concept of AI centric processing. Today's processing has been

graphics centric (GPU) but applied to AI or specific to various number-crunching tasks – none of which are tailored as AI centric.

Technological convergence generally refers to the combination of individual technologies to create new capabilities and modalities previously unseen. While this has been the case with the convergence of graphics technologies into AI technologies, it needs to move to native AI focus. For example, the convergence of compact microelectronics for cameras, telecommunications, and processors yielded the smart phone. Convergence in the AI Action Plan in our viewpoints means the phenomenon of AI and design thinking within engineering best-practices. Our vision of convergence means that mission capabilities can be constituted with *reconfiguration* instead of *redesign*, and functionality develops synergistically. As a result we promote the following five specific impact measures:

- 1. Al SWaP to Performance ratio: Total product size decreases while total performance increases.
- 2. Al Cyber Readiness Level: Total fragility decreases while resilience increases.
- 3. Public Al Economic Scalability: Total cost of ownership decreases while adoption rate increases.
- 4. Public Al ROI Scaling: Total cost of new products decreases while returns on investments increases.
- 5. Al Total impact Metric: a composite measure of items 1 through 4 preceding is maximized.

Implementing this vision in service of US defense and commerce will provide the nation with overwhelming advantage over any competitor. We envision an augmented human-on-the-loop of AI, conducting *anticipatory operations*, enabled by quantum information science (QIS), will provide overwhelming force regardless of domain and compose asymmetric advantages produced by the key set of strategic measures.

Recommendation #7 – Design Thinking Approach to Knowledge Intensive Competition

"Knowledge itself is Power", Francis Bacon, Meditationes Sacrae (ca. 1597)

We recommend a holistic approach to Al using Design Thinking principles to elevate the <u>knowledge intensive</u> <u>competition</u> in America's favor over that of peer-competitors and adversaries. Policies and regulations that reduce the need for rules and dogma but empowers and trusts people at the center of the activities in Al are required: in effect, a policy to foster teaming for Al outcomes between large and small players so that the infrastructure benefits of large players can be leveraged by the innovative small actors.

"Design thinking is a human-centered approach to innovation that draws from the designer's toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success." – Tim Brown, Chairman, IDEO⁴

We recommend using Design Thinking⁴ as a key aspect in the AI Action Plan to provide a framework to transform the very basic processes of human and AI technology research to business outcomes in synergistic way. Design Thinking principles used as a concept of strategy to build the AI Action Plan could result (for example) in the addition of salient policies that accelerate academia, industry, and government value of innovations, by unlocking access to government IP (patents, prototypes, methods) that are siloed and otherwise hidden in various agencies or lying dormant in university laboratories. The Design Thinking approach, as we see it, deserves organizational review in

⁴ https://designthinking.ideo.com/

the AI Action Plan around the nature of commercial off the shelf (COTS) open-source tools and technologies. We draw attention to the potential and latent critical dangers to signify critical cautions for any future AI Action Plan:

- COTS and Open-Source is not focused on interoperability. Interoperability is critical to AI systems.
- COTS and Open-Source does not have Security-by-design. Al requires security in its foundations.
- Today's AI Models have a mix of sources, inherent inconsistencies, and maintainability issues.
- Malicious contributions pose significant and often undetected risk. Counter-Al is not understood.
- Human-AI Performance metrics are not generally aligned or developed with task-specific, sector specific, DoD or IC mission requirements. Rather, these are derived from COTS or Open-Source foundational AI models as rote truth rather than through curated, configured, verified, sources and best-practices to any community of interest.

We recommend the Al Action Plan prioritize these concerns in the assessment of assets from COTS and open source while supporting the innovation process, empowering collective knowledge intensive competition (against peers) while crafting open-source derived but trusted solutions. This implies also and especially favoring the unique and proprietary values that bring expertise from America's innovative thinkers and providing policies that attract asymmetrical advantages in developers toward a whole of nation Al-benefits driven approach.

While open-source is surely to always be some component of AI, we suggest the true value is locked in people within the companies and establishments that if resources are freed up to support collaboration and cooperation, for example, punishing agencies that avoid CRADA's (Collaborative Research And Development Agreements) and rewarding agencies that attract CRADA's will contribute to rapidly advancing an AI Action Plan into tangible AI outcomes that cannot be predicted by extrapolative thinking.

It is easy to forget that beneficial strategic surprises reside within America. We are suggesting unlocking these benefits by addressing the AI Action Plan to include design-thinking, cooperation, collaboration incentives for AI and the resultant empowerment to build AI focused intellectual property will become exponential. This process can start in the classroom or the boardroom, with the tinkerers and enabling a broader support through introspective intelligence via supply chain inventory and analytics within the United States. We recommend, this process should proceed in the AI Action Plan irrespective of mainstream or commodity availability of conventional AI mindsets, tools, software libraries and open-source data resources or ossified agency or group cultures in various sectors, markets or domains that inhibit outreach and opportunity.

END OF RESPONSE